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Convection by a horizontal thermal gradient
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This paper considers a paradigm large-Prandtl-number, large-Rayleigh-number forced
convection problem suggested by the batch melting process in the glass industry.
Although the fluid is heated from above, non-uniform heating in the horizontal
direction induces thermal boundary layers in which colder liquid is driven over hotter
liquid. This leads to an interesting selection problem in the boundary layer analysis,
whose resolution is suggested by a combination of analytical and numerical evidence.

1. Introduction
This paper concerns the structure of slow two-dimensional convective flow in a

rectangular container whose horizontal upper boundary is subject to a prescribed
temperature gradient. In steady flow, the vertical temperature profile varies from
one of stable stratification to one of unstable stratification as we move down the
temperature gradient at the upper boundary, and a circulation is set up in which the
liquid near the top moves down this temperature gradient.

Our work is motivated by the study of batch melting in the glass industry, in which
a solid granular material usually consisting mostly of sand is fed into a glass-melting
tank as in figure 1. In a so-called ‘bridge-wall’ furnace, steady radiative heating is
applied to the top of the tank, and the batch melts at both the top and the bottom of
the ‘blanket’, which is the wedge-shaped region shown in figure 1. Since the average
density of the blanket is lower than the density of the molten glass, there is little
molten glass on the top of the batch, which floats above the melt but only partially
covers the melt surface. The melt is removed for further processing at the downstream
end of the tank. Since the batch blanket works as an insulator for radiative heating,
the temperature is greater at the surface of the uncovered glass than directly beneath
the batch. Due to buoyancy, this temperature difference forces a convective flow of
hot glass under the batch towards the feed point, and this influences the melting and
length of the blanket.

In this paper, we will study a prototype for such convective flows that are driven
by horizontally non-uniform heating from above. We will avoid the complication of
modelling the batch blanket by assuming instead that the top surface of the glass is
free of stress and at a prescribed temperature which is an increasing function of x.
We will also ignore other important real-world effects by assuming that the flow is
two-dimensional, that the viscosity and the thermal conductivity are constant, and
that the Boussinesq approximation is valid. Even with these simplifications, our model
poses many interesting mathematical challenges, both analytically and numerically.

A lot of research has been done on convection due to a horizontal temperature
gradient in a rectangular cavity. Most of this work concerns cavities whose vertical
walls are kept at different temperatures. In Batchelor (1954), Elder (1965) and Gill
(1966), for example, this problem has been investigated in the case where the aspect
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Figure 1. Schematic overview of the bath. The length of the bath is L and the height is H .

ratio H/L is very large. Batchelor (1954) considered cases where the Rayleigh number
Ra is either very small or very large. In the latter case, Batchelor predicted a flow with
thin thermal boundary layers along the solid walls of the cavity and an isothermal
core. After the experimental work done by Elder (1965), Gill (1966) modified the
model when Ra � 1 by assuming that the temperature in the core is only a function
of the vertical coordinate. Small aspect ratio baths were investigated by Daniels (1993)
and Cormack et al. (1974), who found that the flow consists of a core region where
the streamlines are more or less horizontal and the temperature is approximately
linear in the horizontal coordinate and independent of the vertical coordinate, and
the regions near the ends of the bath where the flow turns through 180◦. Daniels
(1993) showed that for Ra � 1, the thickness of these latter regions is proportional to
(RaH/L)−3/5.

However, as far as the present authors are aware, very little research has been done
on the case where horizontal temperature gradients are caused by keeping the vertical
walls insulated and prescribing the temperature at the top surface of the bath.

2. The mathematical model
In our paradigm model, the velocity u = (u, v), the excess pressure p (with the

hydrostatic pressure subtracted), and the temperature T measured relative to the
coldest surface temperature at the top left-hand corner of the bath satisfy the equations
of conservation of mass, momentum, and energy in the form

∇ · u = 0, (2.1)

(u · ∇) u = − 1

ρ
∇p + ν∇2u + g, (2.2)

u · ∇T = κ∇2T . (2.3)

Here ρ, ν, and κ are the constant density, kinematic viscosity, and thermal diffusivity,
and g = (0, αgT ) where α is the thermal expansion coefficient and g is the gravitational
acceleration. Note that in (2.3), we neglect dissipation. The bath occupies the region
0 < x < L, 0 < y < H .

We work with physical parameters typical for glass in batch melting for which (see
Krause & Loch 2002, p. 105)

ρ ∼ 2 × 103 kg m−3, κ ∼ 10−5 m2 s−1, ν ∼ 10−2 m2 s−1, α ∼ 10−5 K−1. (2.4)

Also, for a typical furnace, the height H ∼ 1 m, the length L ∼ 10 m, and the surface
temperature varies by �T ∼ 600K. Hence, when we non-dimensionalize T with �T ,
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p with ρgαH�T , x, y with H and u with Uκ
√

Ra/H , we are led to the dimensionless
model

∇ · u = 0, (2.5)

U 2

Pr
(u · ∇) u = −∇p +

U√
Ra

∇2u + T j , (2.6)

√
Ra U (u · ∇) T = ∇2T . (2.7)

Here, Pr = ν/κ ∼ 103 is the Prandtl number and Ra = αg�T H 3/νκ ∼ 104 is the
Rayleigh number, while U is a dimensionless velocity scale which, crucially, is yet to
be determined. Indeed, one of our principal aims is to predict the magnitude of the
fluid velocity. For the moment, we note that a velocity of around 3 × 10−3 mm s−1 is
typically observed in a glass furnace, and this corresponds to U ≈ 1.

On the sides and the base of the bath, we impose zero slip and insulating boundary
conditions, i.e.

u = 0,
∂T

∂n
= 0, on y = 0, x = 0, and x = δ−1, (2.8)

where δ is the aspect ratio H/L. On the upper boundary, in reality there is a radiative
heat flux from above into the free surface and a lower heat flux into the region
covered by the batch. In addition, the free surface is subject to zero traction, while the
fluid adjacent to the batch effectively satisfies zero slip conditions. Our aim in the first
instance is to understand the bulk convective flow induced by the horizontal thermal
gradient so, instead, we suppose that the surface temperature is a known function
T0(x), with T ′

0 > 0. For the velocity, we impose zero stress conditions over the entire
surface.

By introducing a stream function ψ , where u = ∂ψ/∂y and v = − ∂ψ/∂x, we
automatically satisfy (2.5). After elimination of the pressure from (2.6), we get

U 2

Pr

∂
(
∇2ψ, ψ

)
∂ (x, y)

=
U√
Ra

∇4ψ − ∂T

∂x
, (2.9)

√
Ra U

∂ (T , ψ)

∂ (x, y)
= ∇2T , (2.10)

and the boundary conditions are

ψ =
∂ψ

∂x
=

∂T

∂x
= 0 on x =0 and x = δ−1, (2.11)

ψ =
∂ψ

∂y
=

∂T

∂y
= 0 on y =0, (2.12)

ψ =
∂2ψ

∂y2
= 0, T = T0(x) on y = 1. (2.13)

Before proceeding further, we note that integration of (2.10) over the bath and
application of the boundary conditions (2.11)–(2.13) leads to the identity∫ δ−1

0

∂T

∂y
(x, 1) dx = 0. (2.14)

This represents global conservation of energy, stating that there can be no net heat
flow across the top of the bath.
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Figure 2. (a) Streamlines and (b) T as a function of y for x = 0, 0.4, . . . , 4.0 in the case
where δ = 0.25, Ra = 1.6 × 105 (corresponding to ε = 0.1), and Pr = 102.

In view of our uncertainty about U , we will begin by discussing numerical solutions
in § 3. Since Ra � 1, we expect boundary layers to occur, and we will analyse these
in § 4. However, the numerical evidence will provide us with vital clues as to the
structure of the solution and our decision about U .

3. Numerical results
We have calculated the temperature and velocity field using FEMLAB, where we

used the dimensional model (2.1)–(2.3), and afterwards scaled the numerical results for
the temperature and velocity with �T and κ

√
Ra/H , respectively, which is equivalent

to setting U = 1. For the temperature profile at y =1 and the aspect ratio, we have
taken T0 = δx and δ =0.25. In figure 2(a), we plot the streamlines for the ‘low viscosity’
flow Ra = 1.6 × 105, and Pr =102, which corresponds to ε = 0.1, where ε = 1/

√
δ
√

Ra
is a parameter that will be important. They suggest the appearance of a downward
boundary layer near x = 0 and a horizontal layer near y = 1. The thicknesses of these
boundary layers appear to be of approximately the same order.

In figure 2(b), we plot the temperature as a function of y for several values of x.
For 0 <y < 0.7 and δx > 0.1, the temperature is around 0.2, but near y = 1, ∂T /∂y

becomes large, which also suggests that there is a thermal boundary layer near y =1.
The boundary layer behaviours near y = 1 and x =0 become more pronounced when
we increase Ra to 2 × 106 (corresponding to ε = 0.053), and Pr to 103, as can be seen
in figures 3(a) and 3(b). These pictures suggest that, for increasing Rayleigh numbers,
there are thinner boundary layers in the temperature and the velocity field near the
top and left walls of the bath.

From (2.4), it follows that for typical parameter values in a glass furnace,
Pr/δ

√
Ra ∼ 102. Therefore, we suspect that the inertia terms in (2.6) are negligible

relative to viscosity and buoyancy. This suspicion is confirmed by figure 4, where we
plot the streamlines and temperature distribution in the case where Ra =1.6 × 105

and 1/Pr =0, and by figure 5, where we compare the velocity at the top of the bath
in two cases where Pr is large but finite with the case where 1/Pr = 0. From these
pictures, we deduce that there is practically no influence of inertia on the velocity and
the temperature distribution in the case where Ra = 1.6 × 105 and Pr � 102. Figure 5
also shows that, for Ra = 2 × 106, the match between the velocity in the case where
inertia is taken into account and the velocity in the case where inertia is neglected
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Figure 3. (a) Streamlines and (b) T as a function of y for x =0, 0.4, . . . , 4.0 in the case
where δ = 0.25, Ra = 2 × 106 (or ε = 0.053), and Pr =103.
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Figure 4. (a) Streamlines and (b) T as a function of y for x =0, 0.4, . . . , 4.0 in the case
where δ = 0.25, Ra =1.6 × 105 (ε =0.1), and 1/Pr = 0.
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Figure 5. The horizontal velocity at the top of the bath in the case where δ = 0.25 and
(a) Ra = 1.6 × 105 (ε = 0.1) and (b) Ra = 2 × 106 (ε = 0.053). The solid curves are plots of the
velocity when 1/Pr =0 and the dashed curves are when (a) Pr = 102 and (b) Pr = 103.



46 H. J. J. Gramberg, P. D. Howell and J. R. Ockendon

y

x
0.2 0.4 0.6 0.8 1.00.2 0.4 0.6 0.8 1.0 0

0.2

0.4

0.6

0.8

1.0

x

(a) (b)

0

0.2

0.4

0.6

0.8

1.0

Figure 6. Streamlines near the left-hand side of the bath in the case where
(a) Ra =1.6 × 105 (ε =0.1) and Pr = 102 and (b) Ra = 2 × 106 (ε = 0.053) and Pr = 103.

is quite good, though not as good as in figure 5(a), and outside a boundary layer
near x = 0 the difference between the solutions is small enough to allow us to neglect
inertia in the cases where Ra = 2 × 106 and Pr � 103.

Note that figures 2(a)–3(a), seem to suggest that the streamlines bunch up near the
left-hand side of the bath. However, one should realize that the aspect ratio of these
figures is δ−1. In figure 6, we have plotted the streamlines for the same values of Ra
and Pr , near the left-hand side of the bath such that the aspect ratio of the figures
is 1.

Figure 6 shows that the width of the turnover region is of the same order as the
height of the bath.

4. Boundary layer analysis
4.1. The outer region

In the light of the earlier discussion, we now let 1/Pr → 0 and look for the asymptotic
solution when Ra is large and δ is small, such that Ra � δ−2. From (2.10), by an
argument analogous to that used in the Prandtl–Batchelor theorem (Batchelor 1956),
we expect that T is approximately constant inside any closed streamline. Indeed,
assuming that the streamlines are all closed and that U

√
Ra � 1, (2.10) tells us that

T = T (0)(ψ) + O

(
1

U
√

Ra

)
, (4.1)

so that, around any streamline ψ = c,

0 =

∮
ψ=c

∂T

∂n
ds ∼ dT (0)

dψ

∮
ψ=c

∂ψ

∂n
ds. (4.2)

Since c is arbitrary and ∂ψ/∂n< 0 (the direction of the flow is anticlockwise), we
deduce that T (0) = C0 is constant. By repeating this argument successively with

T = C0 +
T (1)(ψ)

U
√

Ra
+ . . . , (4.3)
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and so forth, we find that T is a constant C in the outer region with exponential
accuracy. The fact that T = C does not satisfy the boundary condition (2.13) indicates
the presence of a thermal boundary layer near the top of the bath.

Now considering (2.9) with 1/Pr → 0 and constant T , we find that ψ satisfies the
biharmonic equation

∇4ψ = 0. (4.4)

The boundary conditions for (4.4) are given by (2.11) and (2.12) on the base and the
walls of the bath, while on the top surface we have

ψ = 0,
∂ψ

∂y
= u0(x),

∂2ψ

∂y2
= ω0(x) on y =1, (4.5)

where u0 and ω0 are the apparent surface velocity and vorticity seen by the outer
solution at the bottom of the boundary layer. Neither of these is known as yet, but
they can in principle be related via the Green’s function for the biharmonic equation
in our rectangular domain.

Our task is vastly simplified if, in addition to the assumptions made so far, we
use the smallness of δ to invoke the lubrication approximation. This is formalized by
rescaling x = X/δ, so that (4.4) reduces to

∂4ψ

∂y4
= O(δ2), (4.6)

and the leading-order solution subject to (2.12) and (4.5) is

ψ = u0 y2 (y − 1). (4.7)

It follows that

ω0 = 4u0, (4.8)

but we emphasize that this result follows from using lubrication theory, and is certainly
invalid in the two-dimensional regions near the two ends X = 0, X = 1.

Now, to determine u0, we must examine a coupled thermal/mechanical boundary
layer in which the temperature adjusts from the constant value of C to the specified
surface profile T0(X).

4.2. Boundary layer region

Let ε be the unknown boundary layer thickness near y = 1. We scale 1 − y, ψ , and T

according to 1 − y = εŷ, ψ = − εψ̂ , and T (X, 1 − εŷ) = T̂ (X, ŷ), which gives us, in a
downward-pointing coordinate system,

∂T̂

∂X
= − U

ε3δ
√

Ra

∂4ψ̂

∂ŷ4
, (4.9)

ψ̂

ŷ

∂T̂

∂X
− ∂ψ̂

∂X

∂T̂

∂ŷ
=

1

ε2δ
√

Ra

1

U

∂2T̂

∂ŷ2
, (4.10)

with the boundary conditions

ψ̂ =
∂2ψ̂

∂ŷ2
= 0, T̂ = T0 at ŷ = 0, (4.11)
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and matching conditions

T̂ → C,
∂ψ̂

∂ŷ
→ u0 as ŷ → ∞. (4.12)

The important point to note is that the leading-order outer solution ψ̂ ∼ u0ŷ satisfies
(4.11) identically, implying that the solution takes the form

ψ̂(X, ŷ) = u0(X)ŷ + εψ̂1(X, ŷ) + . . . . (4.13)

A balance in (4.9) and (4.10) is now obtained with the scalings

U

ε3δ
√

Ra
=

1

ε
,

1

ε2δ
√

Ra

1

U
= 1, (4.14)

and, hence,

U = 1, ε =
(
δ2Ra

)−1/4
. (4.15)

Our set of differential equations (4.9), (4.10) becomes

∂T̂

∂X
= − ∂4ψ̂1

∂ŷ4
, (4.16)

u0

∂T̂

∂X
− u′

0ŷ
∂T̂

∂ŷ
=

∂2T̂

∂ŷ2
, (4.17)

with boundary conditions

T̂ = T0(X), ψ̂1 =
∂2ψ̂1

∂ŷ2
= 0 on ŷ =0, (4.18)

T̂ → C,
∂2ψ̂1

∂ŷ2
→ −ω0(X) as ŷ → ∞. (4.19)

The velocity adjustment therefore decouples from the temperature profile, and this
allows us to make further analytical progress.

4.3. Analysis of the boundary layer problem

Integrating (4.16) twice with respect to ŷ gives

∂2ψ̂1

∂ŷ2
= −ω0(X) −

∫ ∞

ŷ

(s − ŷ)
∂T̂ (X, s)

∂X
ds, (4.20)

where we have used (4.19). Now applying (4.18), we deduce from (4.17) and (4.20)
that

ω0(X) = −
∫ ∞

0

ŷ
∂T̂ (X, ŷ)

∂X
dŷ

=
C − T0(X)

u0(X)
+

2u′
0(X)

u0(X)

∫ ∞

0

(
C − T̂ (X, ŷ)

)
ŷ dŷ. (4.21)

In (4.21), T̂ (X, ŷ) is still unknown, but we can express the integral on the right-hand
side in terms of C and u0(X) by considering the function I1(X) defined by

I1(X) =

∫ ∞

0

(
T̂ (X, ŷ) − C

)
ŷ dŷ. (4.22)
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Now, using (4.17),

dI1

dX
=

∫ ∞

0

∂T̂ (X, ŷ)

∂X
ŷ dŷ

=
u′

0

u0

∫ ∞

0

ŷ2 ∂T̂

∂ŷ
dŷ +

1

u0

∫ ∞

0

ŷ
∂2T̂

∂ŷ2
dŷ

= − 2u′
0

u0

∫ ∞

0

ŷ(T̂ − C) dŷ +
C − T0(X)

u0

= − 2u′
0

u0

I1(X) +
C − T0(X)

u0

. (4.23)

It follows that

d

dX

(
u2

0I1(X)
)

= u0 (C − T0(X)) , (4.24)

and hence

I1(X) = − 1

u2
0(X)

∫ 1

X

u0(s) (C − T0(s)) ds, (4.25)

which means that we can rewrite (4.21) as

ω0(X) =
C − T0(X)

u0(X)
+

2u′
0(X)

u3
0(X)

∫ 1

X

(C − T0(s)) u0(s) ds. (4.26)

Recalling that the surface vorticity ω0 is in principle a known linear functional of
u0, we see that (4.26) is an integro-differential equation for u0(X). Indeed, if we use
lubrication theory to approximate ω0 by (4.8), then (4.26) can be transformed into the
second-order nonlinear ordinary differential equation

u0
′′ =

u′
0

(
T ′

0 + 16u0u
′
0

)
T0 − C + 4u2

0

, (4.27)

where ′ = d/dX and T0(X) is given but the core temperature C is still to be determined.
We therefore expect to impose three conditions on (4.27). Since the fluid flows from
the hot end of the bath (X = 1) to the cold end of the bath (X = 0), the upstream
boundary condition is

u0(1) = 0. (4.28)

One other boundary condition comes from the global energy identity (2.14), that is∫ 1

0

∂T̂

∂ŷ
(X, 0) dX = 0. (4.29)

We might guess that u0(0) should also be set to zero, but it can be shown that this is
incompatible with (4.28) and (4.29) when T0 is monotonic, and we will wait until § 5
to propose the final selection criterion.

We can transform (4.29) into a condition depending only on u0 by solving (4.17)
for T̂ as follows. If we introduce

ξ = −
∫ 1

X

u0(s) ds, η = −u0(X)ŷ, (4.30a, b)
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then (4.17) is transformed into the heat equation

∂T̂

∂ξ
=

∂2T̂

∂η2
. (4.31)

The boundary conditions are

T̂ (X(ξ ), 0) = T0(X(ξ )), T̂ (X(ξ ), ∞) = C, (4.32)

where X(ξ ) follows from inverting (4.30a). Hence

T̂ = C − η

2
√

π

∫ ξ

0

(C − T0(X(s))) e−η2/(4(ξ−s))

(ξ − s)3/2
ds, (4.33)

and (4.29) therefore reduces to

0 =
1√
π

∫ 1

0

(C − T0(t)) u0(t)√
−

∫ t

0
u0(s) ds

dt

= − 2√
π

⎛
⎝(C − 1)

√
−

∫ 1

0

u0(t) dt +

∫ 1

0

T ′
0(t)

√
−

∫ t

0

u0(s) ds dt

⎞
⎠. (4.34)

Once we have solved for u0(X) from (4.27), (4.28), and (4.34), we can find the velocity
perturbation in the boundary layer from (4.20) as

û1 =
∂ψ̂1

∂ŷ
= −4ŷu0(X) +

∂I2

∂X
, (4.35)

where I2 is defined as

I2(X, ŷ) :=
1

2

∫ ∞

ŷ

(s − ŷ)2 (T (X, s) − C) ds. (4.36)

After a few manipulations we find

I2(X, ŷ) =
1

u3
0(X)

∫ ξ

0

(C − T0(X(s)))

(
2√
π

√
ξ − s e−η2/4(ξ−s) − η erfc

(
η

2
√

ξ − s

))
ds.

(4.37)

4.4. Solution procedure

From now on we concentrate on the case where T0(X) = X. Let us suppose for the
moment that C is given. Then our task is to solve

u0
′′ =

u′
0

(
1 + 16u0u

′
0

)
X − C + 4u2

0

, (4.38)

subject to u0(1) = 0 and the flux condition (4.34). This can be viewed as a shooting
problem: we solve (4.38) numerically starting from X =1 and vary u′

0(1) as a shooting
parameter until (4.34) is satisfied.

This procedure can be implemented by noting that, for any λ, (4.38) is invariant
under the transformation

u0 =
ū0√
1 − λ

, X = 1 − 1 − X̄

1 − λ
, C =

C̄ − λ

1 − λ
. (4.39)
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(4.41) is satisfied.

Our approach, then, is to set C̄ =0 and solve

ū′′
0 =

ū′
0

(
1 + 16ū0ū

′
0

)
X̄ + 4ū2

0

, (4.40)

where now ′ = d/dX̄, subject to ū0(1) = 0, ū′
0(1) = α. For each choice of α, we determine

the value of λ (if it exists) such that (4.34) is satisfied, i.e.√
−

∫ 1

λ

ū0(t) dt =

∫ 1

λ

√
−

∫ t

λ

ū0(s) ds dt. (4.41)

Each such solution ū0(X̄) corresponds, via the transformation (4.39), to a solution
u0(X) of the original problem, with C = − λ/(1 − λ).

The results of this procedure are shown in figure 7, where the line on which
(4.41) is satisfied is shown as the thick curve. We see that λ< 0 is an increasing
function of α, with λ→ − 0.364 as α → 0. This corresponds to a value of C ≈ 0.267.
Moreover, figure 7 reveals that there is a critical value for α, say α∗, such that if α � α∗,
ū(X̄) → −∞ before the condition (4.41) is satisfied. This critical value is approximately
equal to 0.422, which corresponds to λ� − 0.238, C =Cmin � 0.192. At C =Cmin,

ū ∼
(
X̄ − λ

)−1/3
, (4.42)

as X̄ → λ.
In summary, it is only for values of C in the interval C ∈ (0.192, 0.267), that there

is a solution for u0 of (4.27) satisfying (4.28) and (4.29). This is certainly in the same
range as values of C predicted by our numerical solutions in § 3. However, we still
need some further mechanism to select a specific value of C from our boundary layer
model.

5. The selection of the core temperature
One possible procedure for selecting C would be to consider the fate of the

boundary layer after it has impacted the corner X = 0, y =1. The numerical evidence
of figures 2–4 suggests that it transforms itself into a vertical layer which may
ultimately transmit information about the value of C all the way round the boundary
of the tank to the corner X = y = 1.
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Figure 8. (a) Horizontal velocity u0 and (b) ∂T /∂ŷ|ŷ = 0 plotted as functions of X with
C =0.266, 0.264, 0.260, 0.253, 0.243, 0.230, 0.192.

However, in the hope that C can be found just from consideration of the boundary
layer near y = 1, we have plotted u0(X) and ∂T /∂y|y =1 for several admissible values
of C in figure 8. We see that C = 0.192 . . . is distinctive in being the value for which

lim
X↓0

∂T

∂y
(X, 1) = −∞, (5.1)

i.e. it gives the greatest vertical temperature gradient in the corner. It is conceivable
that the boundary layer needs to encounter such a temperature gradient for it to be
sufficiently unstable to give birth to a downward flowing layer near X = 0. We also
notice from figure 8(a) that this smallest value of C gives the maximum value of u2

0

for any X and hence the maximum dissipation rate. In addition, figure 5 is suggestive
of a surface velocity that begins bending towards minus infinity before levelling off
in a narrow region near X = 0. This numerical evidence is our first hint that C takes
its minimum possible value Cmin.

To provide analytical justification for this seemingly arbitrary choice of C, we now
briefly examine the fate of the thermal boundary layer as it turns the corner and
descends the cold left-hand wall of the bath. We are handicapped by the fact that
this boundary layer has to match with a fully two-dimensional Stokes flow region in
which X = O(δ) and analytical solution appears to be impossible. Nevertheless, we
can infer from our outer solution that the surface velocity in this Stokes flow region
is O(1) unless C =Cmin, in which case (4.42) implies that it is much larger, of order
δ−1/3.

We proceed as follows. First we make the assumption that the temperature is, to
leading order, convected through the corner region. Since ψ = O(ε) in the thermal
boundary layer on the top surface, this implies that ψ is also O(ε) in the cold wall
boundary layer in which O(1) variations in T occur. We then obtain a dominant
balance in the governing equations (2.9)–(2.10) via the rescalings

x = εδ1/3x̃, ψ = εψ̃. (5.2)

Neglecting terms of order ε2, we thus obtain the equations

∂T

∂x̃
=

∂4ψ̃

∂x̃4
,

∂ψ̃

∂y

∂T

∂x̃
− ∂ψ̃

∂x̃

∂T

∂y
= δ2/3 ∂2T

∂x̃2
(5.3)

in this boundary layer.
To leading order in δ, T is convected with the flow, so we can write T = F (ψ̃), where

F is determined in principle by inlet conditions from the corner problem. Matching
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Figure 9. Vertical velocity scaled with δ1/3 on y = 0.5 as a function of x̃ = x/δ1/3ε for
(0.1, 0.25) (solid curve), (ε, δ) = (0.053, 0.25) (dashed-dotted curve), (0.1, 0.1) (dotted curve),
and (0.1, 0.053) (dashed curve).

with a constant temperature C in the core flow, we thus obtain

∂3ψ̃

∂x̃3
= F

(
ψ̃

)
− C, (5.4)

subject to the boundary conditions

ψ̃ =
∂ψ̃

∂x̃
= 0 at x̃ = 0, (5.5)

∂2ψ̃

∂x̃2
→ 0 as x̃ → ∞. (5.6)

Although we cannot solve this problem without knowledge of the function F (ψ̃), we
can deduce that ψ̃ and T must both be independent of y in this region. It follows
that there is a constant vertical velocity ṽ such that

∂ψ̃

∂x̃
→ ṽ as x̃ → ∞, (5.7)

and the leading-order matching condition for the outer two-dimensional Stokes flow
is thus

∂ψ

∂x
= δ−1/3ṽ on x = 0. (5.8)

The presence of the δ−1/3 term in (5.8) means that the surface velocity feeding into
the corner region in the upper left-hand corner of the bath is of the same order
as the descent velocity if and only if C = Cmin. Moreover, this choice minimizes the
singularity experienced by the outer Stokes flow in the corner. Numerical evidence
that the scaling (5.2) in the cold wall boundary layer is correct is provided by
figure 9, where we have plotted the scaled vertical velocity as a function of the scaled
coordinate x̃ = δ−1/3ε−1x.

We remark that there is a further inner region closer still to the cold wall in which
the fluid velocity tends to zero and thermal diffusion regains its importance. In this
region, the flow is given by

ψ̃ ∼ αx̃2

2
, (5.9)
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Figure 10. Plot of the asymptotic solution for the temperature (a) and the velocity (b) as a
function of y for X = 0.0, 0.1, . . . , 1.0 with C =0.1928 and ε = 0.1.
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Figure 11. Plot of the numerical solution for temperature (a) and the velocity (b) as a
function of y for X = 0, 0.1, . . . , 1.0 with δ = 0.25 and ε =0.1 (or Ra = 1.6 × 105).

where α = d2ψ̃/dx̃2(0), and the rescaling x̃ = δ2/9ξ̃ yields the equation

−αx̃
∂T

∂y
=

∂2T

∂ξ̃ 2
(5.10)

for T (y, ξ̃ ). This equation governs the y-variations in T near the left-hand wall
observed in figures 2–4.

6. Discussion
It is now important to compare our asymptotic solution for C = Cmin with the

two-dimensional numerical solutions when T0 = X. We choose ε =0.1, corresponding
to Ra = 1.6 × 105 when δ = 0.25 or Ra =106 when δ =0.1. In figure 10 we plot, as a
function of y =1 − εŷ, the composite asymptotic approximations for the temperature
T and the velocity u given respectively by

T ∼ T̂ , u ∼ u0(X)y(3y − 2) + εû1, (6.1)

where T̂ is given by (4.33) and u0 and û1 follow from (4.27) and (4.35). In figures 11 and
12 we plot the corresponding numerical solutions with δ = 0.25 and Ra = 1.6 × 105,
and δ =0.1 and Ra = 106, respectively. From these three figures, we observe that, for
X � 0.1, the boundary layer solution and the numerical solution for the temperature
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Figure 12. Plot of the numerical solution for the temperature (a) and the velocity (b) as a
function of y for X = 0, 0.1, . . . , 1.0 with δ = 0.1 and ε = 0.1 (or Ra =106).
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Figure 13. Plot of the numerical solution for the temperature (a) and the velocity (b) as a
function of y for X = 0, 0.1, . . . , 1.0 with δ = 0.25 and ε = 0.035 (or Ra = 107).

and the velocity are in good agreement with each other even for this relatively large
value of ε. In particular, both the numerical solution and the asymptotic solution
for the horizontal velocity are roughly parabolic in y in the core. However, if we
increase the Rayleigh number to Ra =107 in a bath with δ = 0.25, Figure 13 reveals
that the horizontal velocity profile in the numerical solution is no longer parabolic
in the core. This prompts us to reconsider, for high Rayleigh numbers, the validity
of our assumption that, away from boundary layers, there is a core flow of closed
streamlines that occupies most of the bath.

The possibility that the core flow is disrupted by the fluid mechanics near the base
y = 0 leads us to make a conjecture about the fate of the cold wall boundary layer
when it emerges from the corner X = 0, y = 0. Figure 11(a) reveals that although
there is a stable thermal stratification adjacent to the cold wall, the temperature to
which the core flow has to match as X → 0 can be unstably stratified for small y,
and that the intensity of this unstable stratification increases as ε, and hence the
mechanical boundary layer thickness, decreases. Moreover, we observe from figure 14
that, for sufficiently small values of ε, the cold wall boundary layer ceases to generate
a gravity current along the lower wall but rather appears to separate from the base
and penetrate the core as it emerges from the corner. This means that the core is no
longer isothermal and explains the non-parabolic core velocity profiles of figure 13.
Our asymptotic solution, obtained in the limit ε → 0, therefore seems to fail if ε is



56 H. J. J. Gramberg, P. D. Howell and J. R. Ockendon

10 2 3 4

0.2

0.4

0.6

0.8

1.0

y

x
0.20 0.4 0.6 0.8 1.0

x

0.1

0.2

0.3

T

(a) (b)

y = 0.9

0.8
0.7

0

1

Figure 14. Plot of streamlines (a) and the temperature as a function of x for
y = 0, 0.1, . . . , 1 (b) in the case where ε = 0.053 and δ =0.25 (or Ra = 2 × 106).

too small! We hypothesize that our solution applies in an asymptotic regime of the
form f (δ) � ε � 1, although we have thus far been unable to identify the form of
f (δ): there does not appear to be a straightforward criterion for separation of the
boundary layer on y =0.

In conclusion, we remark that our analysis would need to be changed radically had
we imposed a no-slip boundary condition at y = 1. In such a situation, the scaling for
U would have been

U

ε3δ
√

Ra
= 1,

1

ε2Ra

1

U
= 1, (6.2)

instead of (4.14) and (4.15), leading to

U =
(
δ2Ra

)1/10
, ε =

(
δ2Ra

)1/5
. (6.3)

Moreover, the thermal and mechanical boundary layer would now be intimately
coupled, making the mathematical analysis far less tractable.

7. Conclusion
In this paper, we have used numerical and analytical methods to analyse the

convective flow induced by applying a horizontal thermal gradient to the surface of
a viscous fluid. Our study was motivated by batch melting in a glass furnace, but
we have concentrated on a paradigm problem that simplifies the physics and the
geometry while retaining the features associated with the convective flow.

In the physically relevant limit of large Prandtl number and large Rayleigh number,
we began by assuming that the flow was such that the temperature is approximately
constant in the bulk of the fluid. The flow is therefore effectively a Stokes flow driven
entirely by the boundary layers, in which the thermal gradients are significant. We
have analysed the boundary layer at the top of the fluid when the upper surface
is stress-free. In this case, the shear stress is zero to leading order throughout the
boundary layer, which therefore becomes a vorticity layer. We find that the solution
may be characterized by the surface velocity which in general satisfies an integro-
differential equation. This may be reduced to a second-order ordinary differential
equation if the bath is assumed to be long and thin so that lubrication approximation
applies. Solutions of this equation give good agreement with our full numerical
solutions, although one parameter, namely the temperature C in the bulk of the
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fluid, remains undetermined. There are several possible reasons why the value of C

that maximizes the thermal gradient at the downstream end of the boundary layer
might be selected, but, to resolve the indeterminacy, we have needed to study the fate
of the boundary layer as it encounters the left-hand wall of the bath. Although our
analytical and numerical analysis of this ‘cold wall’ boundary layer gave us confidence
in the selection mechanism for C, it also pointed to the fact that, for a given bath
geometry, our asymptotic solution is not uniformly valid as the Rayleigh number
tends to infinity. We have suggested that this is because the cold wall boundary layer
cannot sustain a gravity current down the base of the bath when the bath aspect
ratio is high enough; instead, it returns into the core flow, thereby invalidating our
assumption that the core is isothermal.

In a real glass furnace, many other effects that we have ignored may be important.
We also recall that the variation of viscosity with temperature and radiative heat
transfer are both likely to be very significant. We note, though, that when the
temperature is roughly constant in the core such effects may be confined to the
boundary layers that we have analysed. This also helps to justify our neglect of heat
transfer through the walls of the bath. Finally, we point out that three-dimensional
flows are often observed in practice.

The authors would like to thank Dr A. C. Fowler, Dr G. Kozyreff, Prof.
J. R. Lister, Prof. E. J. Hinch and Mr S. Chiu-Webster for helpful comments
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Note added in proof After this paper had been accepted for publication the authors
became aware of work by Chiu-Webster, Hinch & Lister (2007) in which the top
boundary layer thickness in argued to be of O(Ra−1/5).
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